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Summary: The procedure has been explained to evaluate the equipment performance by repeated 
measurements of energy dispersive X-ray fluorescence signal of 4.201 × 10−4 mol L−1 uranium 
solution in 3 mol L−1 of HNO3. Standard statistical models were applied to the data. The Poisson 
distribution function [F(X)P] and Normal distribution function [F(X)N] were found to be 1.0197 and 
1.0049 respectively, which are quite near to the ideal value of unity. Linearity range for uranium 
determination by XRF was found to be up to 1.47 × 10−2 mol L−1 of uranium, with regression 
coefficient “R2” of 0.998 under the optimized instrumental parameters. 
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Introduction  
 

In analytical measurement systems that is 
based on observing the radiation emission is 
subjected to some degree of statistical fluctuation 
particularly in X-ray fluorescence spectrometers 
where the peaks and background intensities are 
measured sequentially/simultaneously. These 
inherent fluctuations represent an unavoidable source 
of uncertainty in the measurement and often could be 
predominant source of imprecision or error [1-5]. The 
values of the counting statistics fall into two 
categories. The first, to check the normal functioning 
of counting equipment by multiple measurements of 
a definite quantity of an analyte where as the second 
deals with the inherent statistical uncertainty which 
estimates the precision associated with a single 
experimental measurement. The specific models 
being employed for checking the normal functioning 
of the counting equipment are Poison distribution and 
Normal distribution. Here a set of measurements is 
recorded under identical experimental conditions and 
by applying the statistical models, the internal 
variation is quantified. Any abnormal amount of 
fluctuation detected could indicate malfunctioning of 
some part of the counting system. To assign the 
precision to the measurement, the relative standard 
deviation is to be calculated/computed. 

 
Uranium is one of the elements of prime 

importance in nuclear cycle and its accurate online 
quantification is prerequisite of some processes. 
Different analytical methods such as fluorimetery [6], 
inductively coupled plasma mass spectrometry and 
electroanalytical techniques [7], spectrophotometry 
[8, 9] and X-ray fluorescence spectrometric are 
available for elemental determination at trace and 

ultra trace levels in nuclear fuel materials [10-13]. 
The X-ray fluorescence spectrometry is a well 
established technique for the quantification of metals 
in a wide variety of solid and liquid samples not only 
as an analytical tool for a research laboratory but also 
for quality control purposes [12]. Being a 
multielemental technique it may be used for 
simultaneous determination of major and minor 
elements in the sample. 

 

The present study deals with the 
measurement of precision in the determination of 
uranium in aqueous solution by X-ray fluorescence 
spectrometer (XRF), to estimate the behavior of error 
with counting time under the prevailing experimental 
conditions. This will also provide necessary tools for 
evaluating the quality of results obtained by energy 
dispersive X-ray fluorescence (EDXRF) analysis. 
 

Results and Discussion 
 

Application of X-ray fluorescence 
spectrometry for quantitative measurements of an 
element inherently includes emission and counting of 
X-ray photons. The performance of the measuring 
unit for the estimation of this random phenomenon 
can be evaluated by the application of statistical 
models where as the errors and standard deviation 
achieved reflects the confidence in the measured 
procedure. Therefore, the equipment performance of 
X-ray fluorescence spectrometer was checked for the 
determination of uranium by recording the repeated 
signals of 4.201 × 10−4 mol L−1 of uranium solution 
in 3 mol L−1 of HNO3, employing the optimized 
instrumental parameters given in Table 1. A total of 
94 measurements were recorded and presented in 
Table 2. 
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Table-1: Optimized parameters used for the 
determination of uranium by XRF. 

Parameters Values 
X-ray tube Ag 
Voltage 25 kV 
Current 0.1 mA 
DC Mode ON 
Spinning mode ON 
Counting time 100 second 
Gain 20 ev/ch 
Window levels 

i.   Lower level 
ii.    Upper level: 

 
13340 eV 

     13820 eV 
 
Table-2: Replicate measured intensities (Counts) of 
4.201 × 10−4 mol L−1 of uranium solution by XRF 
arranged in ascending order. 

550 648 683 705 728 
571 649 683 705 731 
576 649 684 707 736 
605 654 684 707 737 
607 655 685 708 738 
611 656 686 709 740 
613 659 687 713 741 
616 661 691 714 743 
626 662 691 716 747 
626 665 691 717 751 
631 668 692 718 754 
632 671 693 719 754 
636 672 694 720 757 
636 675 694 722 760 
638 676 699 725 762 
643 677 701 726 764 
644 679 701 726 776 
645 682 701 726 791 
647 682 702 727 − 

 
To calculate the precision related to uranium 

determination by X-ray fluorescence spectrometry, a 
sample of 4.201 × 10−4 mol L−1 uranium solution in 3 
mol L−1 of HNO3, was exposed for ten times. The 
counting time of signal measurement was fixed as 
100 seconds. The statistical calculations of the data 
have been compiled and shown in Table−3. The 
relative standard deviation (RSD) value was found to 
be 1.627%, which is well within the acceptable limit 
of ≤ 3 %. 

 
The signal stability or the behavior of the 

standard deviation was checked by counting the 
sample of 4.201 × 10−4 mol L−1 of uranium solution 
for different time intervals. The counting time was 
varied from 10 to 500 seconds and the results are 
graphically represented in Figure 2, which is a plot of 
counting time verses determined percent error. It is 
clear from the Figure 2, that the percent error was 
decreased from 6.9 to less than 1.0 % with the 
increase in counting time. Similar results were 
observed for solutions with 1.26 × 10−3 mol L−1 and 
2.10 × 10−3 mol L−1 of uranium where the percent 
error decreased from 4.2 to 2.15 and 2.15 to 0.4 % 
respectively.  
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Fig. 2: Variation of counting error with time. 

 
The perusal of the data indicates that the 

percentage error at the exposure time of 100 sec. is in 
the range of 1.2 to 0.4% for the concentration range 
of 100 to 500 mg/L, respectively. With further 
increase in counting time the variation in error was 
insignificant, therefore, a counting time of 100 sec. 
was considered suitable for stable, reliable and 
accurate measurement of uranium signal and was 
used in all the subsequent measurements. 

 
Application of the Statistical Models 

 
The statistical models discussed in section 

“treatment of data”, were applied to the measured 
intensity data of 4.201 × 10−4 mol L−1 of uranium 
solution in 3M HNO3 for equipment checking and the 
results complied are given in Table 4. Mid-class 
values (Xmid) were plotted against Distribution 
function ∑F(x)D, Poisson-distribution function F(X)P 
and Normal distribution function F(x)N data and are 
shown in Fig. 3−5 respectively. The determined 
values of ∑F(x)D, ∑F(x)P and ∑F(x)N were found to 
be 1.0002, 1.0199 and 1.0011 respectively and are 
quite near to the ideal value of unity, indicating 
smooth functioning of the equipment and the 
expected statistical error due to the instrument is 
negligible. The width of the bar in Poisson 
distribution function curve (Fig. 3) shows the internal 
fluctuation of the data within each class. This internal 
variation within a specific class is determined by 
variance, which is the square of standard deviation 
and reported in the last column of Table−3. The 
determined relative standard deviation was found to 
be 1.627 %. The precisions of 2.3 and ≤ 3.0% have 
been reported for the determination of uranium in 
phosphoric acid [8] and thorium matrix [9, 11], 
respectively. 
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Table-3: Statistical calculations of replicate measurements of 4.201 × 10−4 mol L−1 uranium solution by XRF. 
S. NO. Counting time (Sec) ULα Line intensity, I (counts) 

 Deviation d = xi – x  Deviation square  d2 (Variance) 

1 100 1595 −9 81 
2 " 1580 −24 576 
3 " 1629 +25 625 
4 " 1566 −38 1444 
5 " 1568 −36 1296 
6 " 1603 −1 1 
7 " 1623 19 361 
8 " 1620 16 256 
9 " 1635 31 961 
10 " 1627 23 529 

N=10  1604
n

I
I == ∑   

61302 =∑d  

681.111)(n
d 2

=−∑  

26.101)(n
dσ

2

=−= ∑  

RSD = 
0.01627I

σ =
 

% RSD = 1.627 
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Fig. 3: Variation in distribution with Xmid. 
 
Calibration Curve 

 
For quantitative estimation of uranium, 

intensities of the calibration standards were recorded 
using optimized instrumental conditions (Table−1). 
The concentration of uranium was varied from 2.101 
× 10−3 to 1.47 × 10−2 mol L−1 in 3.0 mol L−1 of nitric 
acid solution. The variation of XRF signal with the 
change in uranium concentration is reproduced in 
Table−5. The calibration curve is shown in Fig. 6, 
which is a plot of XRF intensity verses uranium 
concentration. To obtain an empirical relationship for 
uranium determination, least square fitting was done 
on the calibration standards. The best regression 
coefficients come out to be 1.46 and 124 for slope 
and intercept respectively, with R2 value of 0.998. 
The straight line equation for uranium determination 
in 3 mol L−1 of HNO3 under the optimized 
instrumental parameters was found to be 
y = 1.46x + 124.0 
 

where  x = uranium concentration (mol L−1) and  
y = number of counts 
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Fig. 4: Poison distribution as a function of Xmid. 
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Fig. 5: Normal distribution curve for multiple 
determinations of 100 mg L−1 of uranium 
solution by XRF. 

 
 



Riaz Qadeer and Nasir Khalid          J.Chem.Soc.Pak., Vol. 36, No. 1, 2014 

 

47

Table-4: Data related to statistical models applied to signal variation of 4.201 × 10−4 mol L−1 uranium solution. 
Range = High Class - Low Class 

791 - 550 = 241 
Class Width = 21.9

11
241

11
Range

==  

No. of Obs. No. of Classes Mean of class (Xmid.) Frequency (F) F(x)D = F/N Mean = F(x)D × X Poison 
Distribution F(X)P 

Normal 
Distribution F (X)N 

1 550-571.9 560.95 2 0.0213 11.78 0.00142 3.752 × 10-5 
2 572-593.9 582.95 1 0.0106 6.41 0.001 0.00641 
3 594-615.9 604.95 4 0.0425 26.01 0.0117 0.0125 
4 616-637.9 626.95 7 0.0745 46.39 0.0771 0.0770 
5 638-659.9 648.95 12 0.1277 83.07 0.2562 0.2311 
6 660-681.9 670.95 10 0.1064 71.12 0.3373 0.3372 
7 682-703.9 692.95 21 0.2234 154.53 0.2369 0.2393 
8 704-725.9 714.95 15 0.1596 114.39 0.0824 0.0826 
9 726-747.9 736.95 13 0.1383 101.70 0.0146 0.0139 
10 748-769.9 758.95 7 0.0745 56.16 0.0013 0.0011 
11 770-791.9 780.95 2 0.0213 16.40 1.139 × 10-5 6.833 × 10-6 

   N = 94 ∑F(x)D=1.0002 ∑Mean = m = 
671.48 ∑F(x)P = 1.0199 ∑ F(x)N = 1.0011 
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Fig. 6: Calibration curve of uranium determination 
in 3 mol L−1 of HNO3 solution. 

 

Table-5: Variation of XRF signal (Counts) with 
change in uranium concentration in 3 mol L−1 of 
HNO3 solution. 

Xi (mol L−1) Yi (counts) Xi Yi Xi
2 

2.10 × 10−3 880 4.40 × 105 2.50 × 105 
4.20 × 10−3 1590 1.59 × 106 1.00 × 106 
6.30 ×  10−3 2395 3.59 × 106 2.25 × 106 
8.40 × 10−3 3108 6.22 × 106 4.00 × 106 
1.05 × 10−2 3885 9.71 × 106 6.25 × 106 
1.26 × 10−2 4470 1.34 × 107 9.00 × 106 
1.47 × 10−2 5115 1.79 × 107 1.23 × 107 

∑Xi = 1.4 × 104 ∑Yi = 2.14 × 104 ∑XI Yi = 5.29 × 107 ∑Xi
2 = 3.51 × 107 

Least square line i) 5.29 × 107 = 3.51 × 107m + 1.4 × 104c 
  ii) 2.14 × 104 = 1.4 × 104m + 7c 

 

Experimental 
 

Equipment 
 

Energy dispersive X-ray fluorescence 
spectrometer XR-500 from M/S Links System, UK, 
was used. The system was equipped with 860 
analyzer and 10 mm2 × 3 mm deep Si(Li) detector 
with resolution of 155 eV, was used for measuring 
the uranium intensity. 
 

Chemicals 
 

Stock solution of 2.10 × 10−2 mol L−1 of 
uranium was prepared by dissolving appropriate 

amount of specpure uranium oxide (U3O8) from 
Johnson-Methey, in minimum amount of supra pure 
nitric acid from Merck, and the volume was made up 
with 3 mol L−1 of HNO3. The standard solutions of 
the desired concentration were prepared by 
appropriate dilution of this stock solution 
immediately before use. All other chemicals/reagents 
used were of analytical grade and used as such 
without any treatment. Distilled and deionized water 
was used throughout this work. 
 

Procedure 
 

The standard uranium solutions in 3 mol L−1 
of HNO3 were taken in a flat bottom polyethylene 
sample bottle (Fig. 1), and presented to spectrometer. 
Intensity of the uranium solution was recorded as a 
series of successive measurements (X) under the 
optimized conditions given in Table 1, at an interval 
of about five minutes. 

 
 

Fig. 1: Polyethylene sampling bottle used for 
counting. 
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Treatment of Data 
 

The data obtained by certain number of 
independent measurements “N” of a physical 
property may be characterized for the applications of 
statistical models as:  

 

1. Arrangement of the data in ascending order 
2. Range = (Highest value of signal − Lowest 

value of signal) 
3. Class - width (C. W) = Range / No. of classes 
4. Class limit 

Class I Clower →  Cupper 
Xmin       (Xmin + C.W) 

Class II: Xmin + C.W    →    Xmin + 2 C.W 
   “   “ 
   “   “ 
   “   “ 
5. Xmid = (Clower + Cupper) / 2 
6. Frequency of data (F): No. of occurrence of 

value X in a particular class. 
7. Frequency distribution function [F(x)D] is the 

relative frequency with which the number 
appears during the collection of the data and is 
given as:. 

N
F

tsmeasuremen No.of Total
 x valueof occurence No.ofF(x)D ==  

 

For ideal case  ∑
∞=

=

x

x 0

F(x)D = 1 

8. Mean ( X ) = F(X)D × Xmid 
9. Poisson - Distribution function [F(X)P] 

F(X)P = P(X)P × C.W. 
 

where P(X)P =   )X - (X exp 
X
X.

X 2
1

X










π
 

 
For ideal case ∑ F(X)P = 1 

 
10. Normal - Distribution function [F(X)N] 

F(X)N = P(X)N × C.W. 

where:  [F(X)N] =  







 −
−×

X2
)X(Xexp

X2π
1 2

 

 
For ideal case ∑ F(X)N = 1 

 
Precision Related to XRF Measurement 

 
To assign the precision to the measurement 

made by X-ray fluorescence spectrometry. The 
standard deviation relative to the mean is relative 
standard deviation (RSD), which is given by 
 

RSD = 
X
σ

 

 
where  σ   = Standard deviation 

 
X  = Average or arithmetic mean 

 

It is expressed as a fraction or as a percent. 
The standard deviation (σ) is given by: 

 

1N

)X(X
σ

N  i

1i

2
i

−

−
=
∑
=

=  

and measures dispersion about the mean. The square 
of standard deviation is the variance (σ2) which gives 
an idea of internal fluctuation of data in a particular 
class. 
 

The arithmetic mean is given by 
 

∑
=

=

=
Ni

1i
iX

N
1X  

The practical significance of standard 
deviation may be explained as: 
 

The confidence limits are the upper and 
lower values between which the actual measurement 
will fall with a certain probability. For an infinitely 
large number of readings showing a normal 
distribution the 50% probability error is that where 
the individual X will lie between X ± 0.67σ, 68.3% 
error in X-measurement lies between X ± σ. 
Similarly, 95.4 %, 99.7 %, 99.9 % probability means 
that an individual X values lie between ± 2σ, 3σ and 
4σ respectively. 
 
Least Square Fitting 
 

It is a normal practice to fit a curve to a set 
of experimental data to get useful information. The 
human misjudgment in drawing a smooth curve can 
be avoided by using the method of least square. 
According to this method, a curve will be the best 
fitted to the observed data if sum of squares of 
deviations between observed values (Yi) and 
determined values (Ye) from the curve are minimum 
i.e. 
 

∑ (Yi − Ye )2  is the least. 
 

Consider a data, which can be expressed by 
a straight line equation as: 
 

Yi = mXi + C 
 

where  m = slope of the line and  
C = intercept 
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∑ (Yi – mXi – C)2  is least.   ( i ) 
 
Differentiate w. r. t. X 
 
2 ∑ (Yi – mXi – C) – Xi = 0 
 
or  
∑ XiYi – ∑mXi

2 – C∑Xi  =  0  ( ii ) 
 
Differenciate w. r. t. Y 

 
2 ∑ (Yi – mXi – C) – 1 = 0 
 
or 
 
∑Yi – m∑Xi – nC  =  0   ( iii ) 
 
where ∑ C = nC  
 
so we get two equations : as  
∑XiYi = m∑Xi 2 + C∑Xi    ( iv ) 
 
∑ Yi  =  m∑Xi

 + nC   ( v ) 
 

These two equations are called normal 
equations of a least square line. The values of “m” 
and “c” can be calculated by solving the equation (iv) 
and ( v ). Similarly, the parabolic is represented by: 
 
Y = a + bX + cX2     ( vi ) 
 

Since relation (vi) involves three unknowns 
a, b and c, therefore, three equations are needed to 
find values of these unknowns. These equations can 
be derived in a similar way as has been done for least 
square fitting as: 
 
∑Yi = na + b ∑Xi + c∑Xi

2   (vii) 
 
∑XiYi = a∑Xi + b ∑Xi

2 + c∑Xi 3  (viii) 
 

∑Xi
2 Yi = a∑Xi

2 + b∑Xi
3 + c∑Xi

4  (ix) 
 

The values of a, b and c can be determined 
by solving the eq. (vii) to (ix). 
 
 
 
 
 
 
 

 

Conclusion 
 
From the data it was statistically established 

that the measurement of uranium in solution by XRF 
is rapid, precise and accurate technique. The 
determination could be made without any chemical 
treatment of the sample.  
 

References 
 

1. D. McCormick and A. Roach, Measurement 
Statistics and Computation, John Wiley and 
Sons, New York (1987). 

2. R. Sutarno and J. L. Dalton, Statistical 
techniques for Chemical Analysis and Process 
Control, Chap. 7, In: Analytical techniques in 
Uranium Exploration and ore Processing, 
Technical Report Series No. 341, IAEA, Vienna. 
p. 50 (1992). 

3. G. Gilmore and J. D. Hemingway, Practical 
Gamma-Ray Spectrometry, John Wiley and 
Sons, Chichester, (1995). 

4. J. C. Miller and J. N. Miller, Statistics and 
Chemometrics for Analytical Chemistry, 4th edn., 
Ellis Horwood, PTR Prentice Hall, UK, (2000). 

5. D. L. Massart, B. G. M. Vandeginste, L. M. C. 
Buydens, S. De Jong, P. J. Lewi and J. S. 
Verbeke, Handbook of Chemometrics and 
Qualimetrics, Part A, Elsevier, Amsterdam, 
(2003). 

6. S. Shawky, N. Ibrahiem, A. Farouk and A. 
Ghods, Applied Radiation and Isotopes. 45, 1079 
(1994). 

7. J. R. Pretty, G. J. Van Berkel and D. C. 
Duckworth, International Journal of Mass 
Spectrometry and Ion Processes, 178, 51 (1998). 

8. C. I. Park, H. Z. Huang and K. W. Cha, Bulletin 
of the Korean chemical society, 22, 84 (2001). 

9. C. F. Radu and L. Vladescu, Revista de Chimie 
Bucharest, 64, 119 (2013). 

10. A. Khuder, Journal of Radioanalytical and 
Nuclear Chemistry, 224, 49 (1997). 

11. S. Dhara, S. S. Kumar, N. L. Misra and S. K. 
Aggarwal, X-Ray Spectrometry, 38, 112 (2009). 

12. E. Margul, R. Van Grieken, C. Fontas, M. 
Hidalgo and I. Queralt, Applied Spectroscopy 
Reviews, 45, 179 (2010). 

13. N. L. Misra, Pramana Journal of Physics, 76, 
201 (2011). 

 


